
In-
(0 -Final Report: June 1993

Asynchronous Design for Parallel Processing Architectures D T IC
Contract No.: N00014-89-J-3036 L ECT E

PrinciDal Investigator: Teresa H.-Y. Meng JULO 6.1
CIS 132, Stanford University, Stanford, CA. 94305

Phone Number: (415) 725-3636
E-Mail Address: meng@tilden.stanford.edu

e integration of VLSI systems becomes larger and denser, implementing a high-performance
parallel architecture using a global clock is becoming more inefficient and difficult to design, pri-
marily due to concerns related to clock skew and data synchronization. To solve this problem, a
large system may be broken up into asynchronously communicating processors. Each processor
can be either asynchronous or synchronous and therefore execute at a rate best suited for indivi-
dual tasks. Using such asynchronous communication provides a modular design environment in
which processors can be individually optimized to yield prominent performance improvement.
However the advantages of asynchronous design do not come without a cost, due to two-way
communication and design restrictions necessary to avoid hazards and races. In addition, adopt-
ing an Asynchronous design style requires new methods for synthesis and verification. This
research work addressed these methods to simplify the design methodology for asynchronous
processors and improve their performance.
To provide similar easy-to-use synthesis tools for the design of m.. .auonous systems, as are
available and widely used in the design of synchronous systems, we have developed CAD tools
that allow automated design of synchronous, asynchronous, and mixed synchronous/ asynchro-
nous circuits. Our work can be summarized in three major topics: automated gate-level synthesis
of asynchronous circuits, a uniform approach to both synchronous and asynchronous circuit syn-[i, thesis, and efficient verification.

I Automated Gate-Level Synthesis of Asynchronous Circuits
M i Our first research thrust has been the synthesis of efficient hazard-free circuits using standard cell
Z libraries and gate-arrays. We have automated our synthesis procedure in a CAD tool SYN for the

synthesis of speed-independent circuits, a class of asynchronous circuits [1]. Speed-independent
circuits are very robust to gate delay variations and are self-checking for output stuck-at-faultsII [2]. They are guaranteed to be hazard-free and do not utilize delay-elements to eliminate hazards.
SYN begins with a state graph specification of the circuit and produces a nedist of basic gates.
SYN's state graph specification provides flexibility for describing circuit behavior because state
graphs are a fundamental structure that can easily be derived from any high-level specification
language. For example, we have automated the generation of state graphs from specifications
using burst-mode finite state machines and signal transition graphs.
We have also incorporated into SYN the use observability-don't-cares states to guide logic
transformations that optiir, !:!- for area and speed while maintaining speed-independence 141. ,ll
These optimizing logic tr:.. ; ,rnnations include gate symmetrization, gate sharing, gate merging, N
and redundant input remi', al. On average, they contribute over a 25% delay improvement and a
40% area reduction over the initially synthesized netlist. -O

We have used SYN to generate netlists for a large benchmark :%f over 30 specifications from
industry and academia and found that our optimized circuits are on average 25% faster with an
area penalty of only 15% when compared to comparable speed-dependent wrý.uits in which delay (V)
elements were added to ensure gate-level hazard-freedon. These surprising results can be attri-
buted primarily to the cost of adding delay elements to the critical path to ensure hazard-freedom,

043



as opposed to using logic synthesis to guarantee speed..independence as adopted in our design
style. Such delay elements are particularly problematic because they may have widely varying
real-time performance due to VLSI processing variations. This means designers must resort to
designing for the worst case parameters, translating to an increased average delay for such cir-
cuits.

SYN, however, at times is forced to use basic gates with large-fanin to ensure speed-
independence. These large-fanin gates may not exist in the cell library used and hence need spe-
cial attention for complete ASIC synthesis. To solve this problem, we have developed a heuristic
algorithm which breaks up these large-fanin gates into smaller-fanin gates. This is a difficult
problem because, if not done correctly, breaking up gates in general introduces hazards into the
circuit [4]. We have found that speed-independence can be maintained by introducing feedback
connections, called acknowledgement wire forks, to the newly added internal signals of the
smaller-fanin gates. The choices of connections to maintain speed-independence influence the
circuit size and its speed. Our approach is to add connections that minimize a cost function based
on the designer's requirements on area, delay and reliability.

In summary, SYN provides logic designers with an automated way to build efficient and robust
hazard-free netlists that for most specifications are immediately suitable for standard.cell or
gate-array implementations. This provides designers with an easy-to-obtain, robust, self-
checking, efficient design choice from a number of high-level languages. Using SYN, the
designer is freed from doing a detailed hazard analysis and need not rely on delay elements to
ensure correct circuit behavior.
A Uniform Approach to the Synthesis of Synchronous and Asynchronous Circuits

Our second research thrust has been the development of a synthesis procedure that can be applied
in a uniform way to the design of both synchronous and asynchronous circuits. On the one hand,
synchronous design tools do not utilize environmental constraints which are necessary for the
design of asynchronous circuits. Also, synchronous tools make no effort to remove hazards and
races which cause erratic behavior in an asynchronous circuit. On the other hand, asynchronous
design tools do not incorporate timing analysis and cannot easily handle timing constraints which
are inherent in synchronous circuits.

We introduce a new synthesis procedure for the design of timed circuits [6]. A timed circuit is
specified in the form of a constraint graph which includes both causal relationships, such as
environmental constraints, and timing constraints. We propose that the set of circuits specified
with timing constraints (timed circuits) is actually a superset of both synchronous and asynchro-
nous circuits. From the timed circuit specification, we .aystematically derive a hazard-free
complex-gate circuit implementation. In addition to developing synthesis algorithms, we also
developed a timing analysis algorithm which is used to guide the synthesis procedure. The entire
synthesis procedure has been automated in a CAD tool ATACS.

In addition to providing a uniform approach, we have shown that our synthesis procedure actually
produces better circuits in terms of area and performance than those produced with other tools. In
16], we applied our synthesis procedure to thi- design of asynchronous circuits. In several practi-
cal examples, we found that significant reductions in circuit complexity can be achieved using
conservative timing constraints. In particular, in a memory management unit, we were able to
reduce the circuit area and delay by over 50 percent over the speed-independent implementation.
Our improvement comes from the fact that when timing constraints are considered the system is
found to contain fewer states, and thus, less circuitry is needed to avoid hazards. As in the 3yn-
thesis of speed-independent circuits, wc found that delay elements are not necessary in the syn-
thesis procedure, as the timing constraints are introduced as opportunities for circuit optimization
and hazard-freedom is ensure by logic synthesis, rather than by delaying signal transmission.



Since we incorporate a timing model into the synthesis, we can handle mixed
synchronous/asynchronous circuits such as a DRAM controller which interfaces an asynchronous
RAM with a synchronous environment. For the DRAM controller example, our timed circuit
implementation is at least twice as fast as an equivalent synchronous implementation and 25 per-
cent smaller and faster than a previously published asynchronous implementation. This result
can be attributed to our use of explicit timing constraints and complex state-holding gates.

Recently, we have applied our synthesis procedure to the design of synchronous circuits [7]. By
treating the clock signal as just another input, we can specify and synthesize synchronous circuits
using the same synthesis procedure. We found that by utilizing environmental constraints, our
procedure results in circuits that are 2 to 3 times smaller and faster when compared with circuits
synthesized using academic and industrial synchronous design tools such as Berkeley's SIS and
SYNOPSYS [8]. These surprising results can be attributed to two features of our synthesis pro-
cedure. First, the logic is reduced by utilizing sequential state information to guide synthesis, a
feature not incorporated into synchronous synthesis procedures. Second, each signal is imple-
mented using a single complex gate, reducing the delay along the critical path. Utilizing our state
information, we make these complex gates state-holding, and thus, they can also be very com-
pact.
To summarize, our synthesis procedure provides designers with a uniforn synthesis procedure for
the design of both synchronous and asynchronous circuits. This allows designers to postpone
decisions on system timing until later in the design cycle. It also facilitates the design of mixed
synchronous/asynchronous systems. Finally, by taking advantage of timing constraints in asyn-
chronous design and environmental constraints in synchronous design, our procedure results in
circuit implementations which are 2 to 3 times smaller and faster than implementations derived
using other synthesis procedures.

Automated Verification

Automated verification of asynchronous circuits has been proven to be a necessary component of
a design system. For example, Dill's verifier for speed-independent circuits, AVER, and Burch's
verifier for timed circuits have found hazards in published circuits and help identify bugs in vari-
ous asynchronous CAD synthesis software. Existing verifiers, however, cannot handle big cir-
cuits and can easily take over 10 minutes to verify a circuit of about 100 gates.

We used the intuition gained from our synthesis system to generate an efficient verifier for the
verification of speed-independent circuits which has exponentially smaller run-time complexity
than AVER [4], resulting in orders of magnitudes saving in computation time on verifying large
circuits.

Wc achieve this complexity reduction by inferring the behavior of internal signals from the cir-
cuit netlist and the behavior of primary outputs. We avoid explicitly modeling all behaviors of
the internal signals, and thereby circumventing the state explosion problem faced by AVER.

Our verifier tests that the circuit is hazard-free and that its behavior satisfies its specification.
However, our verifier is conservative and may produce false negatives, but none were found in
our large benchmark set of specifications and netlists from academia and industry. Therefore,
even though conservative, our verification is tight enough to be useful in practice. This verifier
has been an indispensable tool in supporting the design of hazard-free asynchronous circuits, to
aid the synthesis process and verify the synthesized circuits to be correct.

Using our verifier, logic designers need not do extensive simulations to verify the correcmess of
an automatically generated or hand-designed netlist. Simulation is based on single delay values,
but verification handles all possible gate delays, thereby freeing the designer from the worry that
the circuit will fail under slightly different operating conditions than assumed for checking the
circuit's correctness.



Summary
In summary, in the past three years, the results from this project have advanced the the design and
synthesis of asynchronous circuits from theoretical pursuits to the domain of practicality and high
performance. We established the first standard-cell based (or ASIC) design procedure for imple-
menting asynchronous circuits, derived maybe the only well-established testability property of
speed-independent circuits, provided the first uniform approach to efficient synthesis of both syn-
chronous and asynchronous circuits, and developed the most efficient verification tool available
today.
This project has supported two Ph.D. students for a period of three years and sponsored more than
ten publications in technical journals and international conferences.

References:

[I]. Peter A. Beerel and Teresa H.-Y. Meng, "Automated Gate-Level Synthesis of Speed-
Independent Control Circuits", 1992 IEEE International Conference on Computer-Aided
Design Digest of Technical Papers, March 1992.

[2]. Peter A. Beerel and Teresa H.-Y. Meng, "Semi-Modularity and Testability of Speed-
Independent Circuits", Integration, the VLSI Journal, Sept. 1992.

[3]. Peter A. Beerel and Teresa H.-Y. Meng, "Efficient Verification of Determinate Speed-
Independent Circuits", submitted to IEEE ICCAD '93, April 1993.

[4]. Peter A. Bccrcl and Teresa H.-Y. Meng, "Logic Transformations and Observability Don't
Cares in Speed-Independent Circuits" submitted to 1993 ACM International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, April 1993.

[5]. Chris J. Myers and Teresa H.-Y. Meng, "Synthesis of Timed Asynchronous Circuits",
Proc of IEEE International Conference on Computer Design, October 1992.

[6). Chris J. Myers and Teresa H.-Y. Meng, "Synthesis of Timed Asynchronous Circuits", to
appear IEEE Transactions on VLSI Systems, June 1993.

[7]. Chris J. Myers and Teresa H.-Y. Meng, "A Uniform Approach to the Synthesis of Synchro-
nous and Asynchronous Circuits", submitted to IEEE ICCAD '93, April 1993.

[8]. SYNOPSYS. "Version 2.2 Design Complier Reference Manual". Synopsys, Inc., 1992.

DTIC QU!_TE i:..FV !X".ED, 53

Aooession Feow

DTIC TAB '

Just tf lr I Cat
Urlbnnuticod

Availability Codes
IAv, l. .fd/o.

1DIst j



4.A

-A - * - - --

it4

044 4, _ _ __

rI4 0

4 b4

4ý 0

oA u' P Is


